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DIFFERENTIAL EQUATIONS

Differentiation: The rate of chame of a variable w.r.tthe other variable is called as a
Differentiation.

In this case, changing variable is called Dependent variable and other variable is called as an
Independent variable.

d
Example: é is a Differentiation, Herey is dependent variable andx is Independentvariable.

DIFFERENTIAIEQUATIONAN equation which contains differential coefficients is called as a D.E

. dy a%y oy
Examples. 1) x +1=0 2) IxZ +£ +1=0.

Differential Equations are separated into two types

Differential Equations

Ordinary D.E Partial D.E

Ordinary D.E:In a D.E if there exists single Independent variable, it is called as Ordinary D.E

Example: 1) Z—z+2y = 0 is a Ordinary D.E 2) x%+d—y + 1 =0 is aOrdinary D.E

Partial D.E:In a D.E if there exists more than one Independent variables then it is called as Partia

D.E
Example: 1) v +a_2 +1=0 isa Partial D.E,sincex, t are two Independent variables
2) 75, F 1 =0is a PartiaD.E sincex, z are two Independent variables

ORDER OF D.HEhe highest derivative in the D.E is called as Order of the D.E
Example: 1) Order of 32732’ +2y =0isone.

ds a3y1® . .
2) Order of =% + [—y] + 3y = 0is Five.

dx3

DEGREE OF D.Ehe Integral power of highest derivative in the D.E is called as degree of the D.E
1
Example: 1) The degree of[g%] + ZZ—i + 1 =0is One.
8 11 2

2) The degree of [Z%’] + [Z—ﬂ + [%] =0 is Two.
NOTE: Degree of the D.E does not exist when the Differential @dficient Involving with
exponential functions, logarithmic functions, and Trigonometric functions.

dy

Example: 1) There is no degree forthe D.E eax +1 =10

2) There is no degree for the D.Elog ( ) +1=0

3) There is no degree for the D. Esm( ) +1=0.




NOTE: 1) The degree of the D.E is always a +ve Integer, but it never be a negative (or) zero (or) fraction.

2) Dependent variable should not include fraction powers. It should be perfectly Linear.

2
Ex:For the D.E% + ﬁ = 0 Degree does not exist.

FORMATION OF DIFFERNTIAL EQUATION

A D.E can be formed by eliminating arbrary constants from the given D.E by using
Differentiation Concept. If the given equatiodA T T O A Brbitéary GohsBants then differentiating
EO O1 6 OEI AOCAODBAERR AbdED&InEiand Welgethe correspondingD.E

NOTE:Ifthe CE OAT $8% Al T OAET OOGRE AEGAEOOAAOD AlEH €OAT AD Ok

NOTE: Fory = c;e®* + c,e~*2* then the corresponding D.E is given (§D — a;)(D — a,)y =0

In general, ify = c;e%* + c,e%* + — — — 4+ c,e** thenits D.E is given by

(D —a))(D—ay) ——— (D —ay)y =0,where D= %

d
dx’

Special Cases: If y = (¢, + c,x)e** then D.E is given byD — a)?y = 0, where D =
In general, ify = (¢, + cox + 362+ — — — + ckxk‘l)e“x then the corresponding D.Hs given by
(D —a)y=0.

NOTE: For y = e®(c,cosfx + c,sinfx) then D.E is[D? — 2aD + (a? + %)]y = 0.

WRANSKIAN METHOD

Lety = Ax + Bx? be the given equation then its corresponding D.E is given by

y x x? . . .

R This method is applicable when there
y X1 = are two arbitrary constants only.
y2 0 2

DIFFERENTIAL EQUATIONS OF FIRST ORDER AND BESREE

A D.E of the formZ—z = f(x,y) is called as a First Order and First Degree D.E in terms of

dependent variabley and independentvariable x.
In order to solve above type ofoN O A O tBllowiry @éathods exists.

1) Variable Separable Method.

2) Homogeneous D.E and Equations reducible to Homogeneous.

3) Exact D.E and Equations made to exact.

4, ET AAO $8% AT A "AOTT1 011 E60 %wNOAOEI T O8




Method-I: VARIABLE SEPERABLE METHOD

First Form: Let us consider given D.% = f(x,y)

fxy)
If ,y) = ——= then proceed as follows
fxy) e p

dy _ f(xy) _
= gy = 9Wdy = f(x)dx
= [g()dy = [ f(x)dx + C is the required general solution.

Second Fom: If Z—z = f(ax + by + ¢) then proceed as follows

— @ _1ldz _
Letax+by=c=z= dx_b[dx a]

= Z—i =bf(z)+a
By using variableseparable method we can find its general solution.
Letitbe®@(z,x,c;) =0 .Butz=ax+by+c
= @0(ax + by +c¢,x,¢,) =0.
Method-2: HOMOGENEOUS DIFFERENTIAL EQUATION METHOD

Homogeneous Function:A Functionf(x,y) EO OAEA O1 AA EIT 11 CAT AT 0O
f(kx, ky) = k™f (x,y)
amwenﬁﬂxwzﬁzzéé A EiiiCAlAi 60 £61 AGEIT 1 £ A

2)If f(x,y) = ;23/:;/2 is not a homogeneous function.

Homogeneous D.EA D.E of the formj—i’ = f(x,y) is said to be Homogeneous D.E of first order

AT A EEOOO AACOAA ET OAOI O i &£ AADPAIT AtkdDis®AOE
ETT11TCAT AT 66 &£O61 AGETT 1T A£# AACOAA Onés8
d . d .
Ex: 1) s is a homogeneous [E  4) =2 isnota homogeneous D.E
dx x-y dx  x2%2+4y?
dy _ x*+y? . 3.3
2) el is a homogeneous D.E 5) dy _ x°+y is not a homogeneous [
5 dx x+y
d :
3) & is a homogeneous D.E

dx x2+y2
Working Rule: Let us consider given homogeneous D.E% = f(x,y)
Substitutingy = vx = Z—z =v+ xj—z we get
= v +x% = f(x,vx)
= x% = f(x,vx) — v
By using variableseparablemethod we can find the General solution of it
Let it be @(v,x,c) =0 . But v =§

0 (y X, c) = 0 be therequired general solution.

;I
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NON-HOMOGENEOUS DIFFERENTIAL EQUATION

a;x+b,y+cq

d . : ,
A D.E of the formé = is called as a NorfHomogeneous D.E in terms of independent

ax+byy+c,
variable x and dependent variabley , wherea,, by, c;,and a,, b,,c, are real constants.
Case (I)If a;b, —a,b; # 0 then procedure is as follows
Let us choose constants h & k in such a way that,h + b,k +c; =0
—> |
a2h+b2k+C2 = 0

Letx=X+h,y=Y+k and also% = z—; then above relation becomes

dy _ (a1X+b1Y)+(a1h+b1k+C1)
ax (a2X+b2Y)+(a2h+b2k+C2)

ay X+b,Y
ax a,X+b,Y
Which is a Homogeneous D.E of first order and of first degree in termsXofind Y.

By using Homogeneous methadve can find the General solution of it. Let it b@d(Y,X,C) =0 .
Butx=X+h,y=Y+k

= @0(y — k,x — h,c) = 0 istherequired General Solution of the given equation.

Case (ll):If a;b, —a,b; = 0, then By Using Second form of Variable Seperable method we can

find the General Solution of the given equation.

Method-3: EXACTDIFFERENTIAL EQUATION

A D.E of the formMdx + Ndy = 0 is said to be exact D.E i% = g—:.

Its general solution is given by [* Mdx + [ (terms independent of in N)dy = C
(OR)
[*Mdx + [(free from x terms in N)dy = C
(OR)
fx M dx + [(terms not containing x in N)dy = C

NON EXACT DIFFERENTIAL EQUATION

. . . OM 0N
A D.E of the formMdx + Ndy = 0 is said to be NorExact D.E If@ + Ix

In order to make above D.E to be Exact we have to multiply with(x, y) # 0 which is known as
an

Integrating Factor.




To Solvesuch a type of problems, we have following methods.

1) Inspection Method

2) Method to find Integrating Factor I.F
Mx+Ny

3) Method to find Integrating Factor I.F
Mx—Ny

4) Method to find Integrating Factor I.F eff(x) ax
5) Method to find Integrating Factor I.F e/ 9ay

This Method is used foiboth

Method 1. INSPECTION METHOD exactand non-exactD.E
Some Formulae:
x2+y? _ Y\ _ xdy—-ydx
» d (L) = xdx +ydy > d(log¥) = 22
» d(xy) =xdy+ydx > d (logf) _ ydx-xdy
ydx—xdy g xy
> d (Z) - 1Yy xdy-ydx
y y? > d(Tan™'3) = 50
e _ xeYdy—eYdx _1 %\ _ ydx—xdy
> d (x) - x2 > d (Tan ;) T x24y2
» d(xe¥) =xeYdy+eVdx
Hints while solving the problems using Inspection Method 99% of the problems
e Ifin aprobleme® term is there then select anothere™ term. can be solved using

o . Inspection method
e Always takeydx combination with xdy .

Method-2: Method to find Integrating Factor
Mx+Ny

If given D.E isVdx + Ndy = 0 is Non-Exact and it is Homogeneous and algéx + Ny # 0

Then

Mxily is the IntegratingFactor (.F).

1
Mx—Ny

Method-3: Method to find Integrating Factor

Let the given D.E i31dx + Ndy = 0is Non-Exact, and if given D.E can be expressed as

yf (x,y)dx + xg(x,y)dy = 0 And alsoMx — Ny # 0then isan I.LF

1
Mx—Ny
Note: Herein f(x,y), g(x,y), there should be onlyxy combination (with constants also)

i.e. With same powersx3y3, x*y", (1 + xy + x?y?) etc.




Method-4: Method to find the I.Fe/f()dx

(6M 6N)

Let Mdx + Ndy = 0 be the NonExact D.E. If % = f(x)

Where f (x)= Function of xalone or constant then I.F ig/ f ()dx
NOTE: In this case number of terms in M is greater than or equal to number of terms Mi.e- | .

Method-5: Method to find the |.Fe/90)dy

aN oM
Let Mdx + Ndy = 0 be the NonExact D.E. If(axM—ay) =g9)

Where g(y)=Function of y-alone or constant then I.F ig) 9)dy
NOTE:) I OEEO AAOA 101 ARO T &£ OAOI O Ei . EO COAAOGAO

LINEAR DIFFERENTIAEQUATION

A D.E of the form Z—Z + P(x)y = Q(x) is called as a First order and First degree D.E in terms of

dependent variable y and independent variable x where P(x), Q(x) functions of xalone (or)

constant.

Working Rule: Given that z—i +P(x)y =Q(x) -------- (1)
|.F is given bye/ Pax
Multiplying with this I.F to (1), it becomese! P4 | 2 + P(x)y| = el P%

= d[ye/P4*] = QeJ P4 Now Integrating both sides we get

= yel Pdx = [ QelPaxgy 4+ C is the required General Solution.

ANOTHER FORM
A D.E of the formZ—; + P(y)x = Q(y) is also called as a Linear D.E whei(y), Q(y) functions of
y-alone. Now I.F in this case is given by |.E£P9Y and General Solution is given by

xel P = [Qel P2V dy + ¢

Equations Reducible to Linear Form

An Equation of the formf’(y);l—i + P(x)f(y) = Q(x) is called as an Equation Reducible to Linear
Form




Working Rule:

. R d ..
Given that f’(y) Z_i’ +P(x)f(y) = Q(x)—> (1) Hint: First maked—z coefficient
L \dy _ dz as 1, and then make R.H.S term
Letf(y) =z = (V) Z=— purely function of x alone

(= % + P(x)z = Q(x) which is Linear D.E in terms of, x

By using Linear Methodwe can find its General Solution.
Letitbe®@(z,x,c) =0 But f(y) =z

= @(f(y),x,c) = 0is the required solution

BERNOULLIS EQUATION

A D.E of the formZ—z+P(x)y=Qy” EO AAI T AA AO "AOiIT1OITEBO
variable y and independent variable x. where P and Q are functions e&lone (or) constant.

Working Rule:

Given that% +P(x)y=Q(x)y" —— 1
=yt POy =00 T2

Letyl™ =z

Differentiating with respect to x, we get

dz

_ -ndy _
= (1 n)y dx - dx

S P(x)z=(1-n)Q (From 2), which is a Linear D.E in terms of, x

1-ndx

By usingLinear Method we can find general solution of it.

Letitbe®@(z,x,c) =0 = 0(y™™ x,c) = 0 which is general solution ofthe given equation.

Orthogonal Trajectories

Trajectory: A Curve which cuts given family of curves according to some special law is called as

Trajectory.

Orthogonal Trajectory: A Curve which cuts every member of given family of curves &0° is

called as an Orthogonal Trajectory.




Orthogonal Trajectory in Catesian Coordinates

Let f(x,y,c) = 0 be given family of curves in Cartesian Cordinates. / \
dy _ dx

_ o dy For O.T, I .
Differentiating it w.r.t x, we getf (x Y, E) =0. because. two lines ai;e

1™ if  product of

. . d d d . .
Substituting => = —ﬁ, we getf (x y, —ﬁ) = 0. By using previous slopes = —1
. . : : dy dy
methods we can find general solution of it. Let it bg(x,y,c) = 0, = Ox dx -1
which is Orthogonal Trajectory of the given family of curves. ﬂ — _ﬂ
k dx dy
Orthogonal Trajectory in Polar Ceordinates
Letf(r,0,c) = 0 be given family of curves in Polar Gordinates. (ld_r) (lﬂ) -
dr rde) \rao )
Differentiating it w.r.t 8, we getf (r, 9'%) = 0. _ar_ a0
ae dr

Substitutingg—; = —r? % , we getf (r, 0,—r? %) = 0. By using previous

methods we can find general solution of it. Let it bg (8, r,c) = 0, which is Orthogonal Trajectory

of the given family of curves.

Self Orthogonal:If the Orthogonal Trajectory of given family of Curvess family of curves itself

then it is called as Self Orthogonal.

Mutual Orthogonal: Given family of curvesf(x,y,c) = 0 & g(x,y,c) = 0 are said to be Mutually

Orthogonal if Orthogonal Trajectory of one given family of curves is other given family of curves

%74/ .83 , 17 [ & #/1,)."

Statement: The rate of the temperature of a body is proportional to the difference of the

temperature of the body and that of the surrounding medium.

Let 6 be the temperature of the body at the timea and 6 be the temperature of its surrounding

i AAEOCI j AEOQ8 "U OEA . AxOI160 ,Ax 1T &£ AiT1EI
do
EOC(H_HO)
deo : .
= — = —k(6 — 6,) , wherek is a positive constant
do

= —kdt
(9 - 90)

Ch




ao
(6-60)

Integrating, we get [ = —k [dt

= [8=0,+ce X

Problem

A body is originally at80°C and cools down to60°C in 20 minutes. If the temperature of the air is

40°C, find the temperature of the body after 40 minutes.

Sol: Let 6 be the temperature of the body at a time

7A ET 1 x OEAO &£OIiI .AxOi 1680
de
—_— OC —
i (6—16,)
de . "
= Pyl —k(6 — 6,) , wherek is a positive constant

Given temperature of the air 6, = 40°C

ao

= —kdt

Integrating, we get (eiio) = —k[dt

= 0=40+ce (1)

Now, given att = 0, 8 = 80°C

()=80=140+c

= c =40

Substituting this value ofc in@ , we get
= 0 =40 + 40e™* —(1l)

Again, givenat t = 20, 8 = 60°C

(IN=> 60 = 40 + 40 ¢ 20k
= k= ! log 2
~ 20 %8
Substituting this value ofk in @ we get

— 0 = 40 + 40e~(z0"082)t

— 0 =40+ 40e‘(%‘°g2)—>@

A x

t 6
0 80
20 60
40 ?




Again, whent = 40,60 =?

Qi) =0 =140+ 40e~(35'082)

= At t = 40,0 = 50°C

LAW OFNATURAL GROWTH (Or) DECAY

If x(t) be the amount of substance at time , then the rate of change of amountx(t) of a
chemically changing substance is proportional to the amount of the substance available at tha

time.

dx dx
— Xx = —=—kx
dt dt

where k is a proportionality constant

. . d . .
Note: If ast increases,x increases we can takeﬁ = kx (k> 0), and ifast increases,x decreases

we can take‘;—f = —kx (k >0)

RATE OF DECAY OF RADIOACTIVE MATERIALS

If u is the amount of the material at any time, then% = —ku, wherek is any constant.




