COURSE STRUCTURE

<table>
<thead>
<tr>
<th>CODE</th>
<th>SUBJECT</th>
<th>T</th>
<th>P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industrial Management</td>
<td>4+1*</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CAD/CAM</td>
<td>4+1*</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Metrology and Surface Engineering</td>
<td>4+1*</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Refrigeration and Air Conditioning</td>
<td>4+1*</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Design of Machine Members – II</td>
<td>4+1*</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Thermal Engineering - II</td>
<td>4+1*</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Metrology and Machine Tools Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Advanced English Communication Skills Lab</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>30</td>
<td>6</td>
<td>28</td>
</tr>
</tbody>
</table>

III Year

Semester II
UNIT I

UNIT II

Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation, Types of mechanistic and organic structures of organisation (Line organization, Line and staff organization, functional organization, Committee organization, matrix organization, Virtual Organisation, Cellular Organisation, team structure, boundaryless organization, inverted pyramid structure, lean and flat organization structure) and their merits, demerits and suitability.

UNIT III

Plant location, definition, factors affecting the plant location, comparison of rural and urban sites-methods for selection of plant- Matrix approach. Plant Layout – definition, objectives, types of production, types of plant layout – various data analyzing forms-travel chart.

UNIT IV

Work study - Definition, objectives, method study - definition, objectives, steps involved- various types of associated charts-difference between micromotion and memomotion studies. Work measurement- definition, time study, steps involved-equipment, different methods of performance rating- allowances, standard time calculation. Work Sampling – definition, steps involved, standard time calculations, differences with time study.

UNIT V

UNIT VI

Introduction to PERT / CPM : Project management, network modeling-probabilistic model, various types of activity times estimation-programme evaluation review techniques- Critical Path-probability of completing the project, deterministic model, critical path method (CPM)-critical path calculation-crashing of simple of networks.

UNIT VII

Inspection and quality control, types of inspections - Statistical Quality Control-techniques-variables and attributes-assignable and non assignable causes- variable control charts, and R charts, attributes control charts, p charts and c charts. Acceptance sampling plan- single sampling and double sampling plans-OC curves. Introduction to TQM-Quality Circles, ISO 9000 series procedures.

UNIT VIII

TEXT BOOKS:

2. Industrial Engineering and Management O.P. Khanna Dhanpat Rai.

REFERENCES:

UNIT – I
Computers in Industrial Manufacturing, Product cycle, CAD / CAM Hardware, Basic structure, CPU, Memory types, input devices, display devices, hard copy devices, storage devices.

UNIT – II
Computer Graphics : Raster scan graphics coordinate system, database structure for graphics modeling, transformation of geometry, 3D transformations, mathematics of projections, clipping, hidden surface removal.

UNIT – III
Geometric modeling : Requirements, geometric models, geometric construction models, curve representation methods, surface representation methods, modeling facilities desired.

UNIT – IV
Drafting and Modeling systems : Basic geometric commands, layers, display control commands, editing, dimensioning, solid modeling.

UNIT – V

UNIT – VI

UNIT – VII
Computer Aided Quality Control: Terminology in quality control, the computer in QC, contact inspection methods, noncontact inspection methods-optical, noncontact inspection methods-nonoptical, computer aided testing, integration of CAQC with CAD/CAM.

UNIT – VIII
Computer integrated manufacturing systems: Types of Manufacturing systems, Machine tools and related equipment, material handling systems, computer control systems, human labor in the manufacturing systems, CIMS benefits.

TEXT BOOK :
1. CAD / CAM A Zimmers & P.Groover/PE/PHI
2. CAD / CAM Theory and Practice / Ibrahim Zeid / TMH

REFERENCES :
1. Automation , Production systems & Computer integrated Manufacturing/ Groover/P.E
2. CAD / CAM / CIM / Radhakrishnan and Subramanian / New Age
3. Principles of Computer Aided Design and Manufacturing / Farid Amirouche / Pearson
4. CAD/CAM: Concepts and Applications/Alavala/ PHI
UNIT – I

UNIT – II
LINEAR MEASUREMENT: Length standard, line and end standard, slip gauges – calibration of the slip gauges, Dial indicator, micrometers.
MEASUREMENT OF ANGLES AND TAPERS: Different methods – Bevel protractor – angle slip gauges – spirit levels – sine bar – Sine plate, rollers and spheres used to determine the tapers.
LIMIT GAUGES: Taylors principle – Design of go and No go gauges, plug ring, snap, gap, taper, profile and position gauges.

UNIT – III
OPTICAL MEASURING INSTRUMENTS: Tool maker’s microscope and its uses – collimators, optical projector – optical flats and their uses, interferometer.

UNIT – IV
MEASUREMENT THROUGH COMPARATORS: Comparators – Mechanical, Electrical and Electronic Comparators, pneumatic comparators and their uses in mass production.

UNIT– V
SCREW THREAD MEASUREMENT: Element of measurement – errors in screw threads – measurement of effective diameter, angle of thread and thread pitch, profile thread gauges.

UNIT – VI
MACHINE TOOL ALIGNMENT TESTS: Requirements of Machine Tool Alignment Tests, Alignment tests on lathe, milling, drilling machine tools.. Preparation of acceptance charts.

UNIT – VII
GEAR MEASUREMENT: Gear measuring instruments, Gear tooth profile measurement. Measurement of diameter, pitch pressure angle and tooth thickness.
Coordinate Measuring Machines: Types of CMM, Role of CMM, and Applications of CMM.

UNIT – VIII
SURFACE ENGINEERING: Surface treatment processes and their characteristics and applications. (a) Overlay coatings (b) Diffusion coatings (c) Thermal or mechanical modification of Surfaces

TEXT BOOKS:
1. Engineering Metrology / I C Gupta / Danpath Rai

REFERENCES:
1. BIS standards on Limits & Fits, Surface Finish, Machine Tool Alignment etc.
2. Fundamentals of Dimensional Metrology 4e / Connie Dotson / Thomson
4. Surface Engineering with Lasers/ Dehosson J.T.
UNIT – I

UNIT – II

UNIT III

UNIT IV

UNIT V

UNIT – VI
Introduction to Air Conditioning: Psychometric Properties & Processes – Characterization of Sensible and latent heat loads — Need for Ventilation, Consideration of Infiltration – Load concepts of RSHF, GSHF- Problems, Concept of ESHF and ADP.

UNIT VII
Requirements of human comfort and concept of effective temperature- Comfort chart –Comfort Air conditioning – Requirements of Industrial air conditioning, Air conditioning Load Calculations.

UNIT – VIII
Air Conditioning systems - Classification of equipment, cooling, heating humidification and dehumidification, filters, grills and registers, fans and blowers. Heat Pump – Heat sources – different heat pump circuits.

TEXT BOOKS:
1. Refrigeration and Air Conditioning / CP Arora / TMH.
2. A Course in Refrigeration and Air conditioning / SC Arora & Domkundwar / Dhanpatrai

REFERENCES:
1. Refrigeration and Air Conditioning / Manohar Prasad / New Age.
2. Principles of Refrigeration - Dossat / Pearson Education.
3. Refrigeration and Air Conditioning-P.L.Bellaney
4. Basic Refrigeration and Air-Conditioning – Ananthanarayanan / TMH
UNIT – I

UNIT – II
ENGINE PARTS: Connecting Rod : Thrust in connecting rod – stress due to whipping action on connecting rod ends – Cranks and Crank shafts, strength and proportions of over hung and center cranks – Crank pins, Crank shafts.

UNIT – III
Pistons, Forces acting on piston – Construction Design and proportions of piston., Cylinder, Cylinder liners,

UNIT – IV

UNIT – V
POWER TRANSMISSION SYSTEMS, PULLEYS: Transmission of power by Belt and Rope drives, Transmission efficiencies, Belts – Flat and V types – Ropes - pulleys for belt and rope drives, Materials, Chain drives

UNIT – VI

UNIT – VII
Design of power screws: Design of screw, Square ACME , Buttress screws, design of nut, compound screw, differential screw, ball screw- possible failures.

UNIT – VIII
Machine Tool Elements: Design of beds, slide ways, spindles- material selection, design of strength and rigidity of parts.

TEXT BOOK:

REFERENCES:
1. Design Data hand Book, S MD Jalaludin, Anuradha Publishers
3. Data Books : (I) P.S.G. College of Technology (ii) Mahadevan
UNIT – I

UNIT II

UNIT – III
Steam Nozzles : Function of nozzle – applications - types, Flow through nozzles, thermodynamic analysis – assumptions -velocity of nozzle at exit-Ideal and actual expansion in nozzle, velocity coefficient, condition for maximum discharge, critical pressure ratio, criteria to decide nozzle shape: Super saturated flow, its effects, degree of super saturation and degree of under cooling - Wilson line.

UNIT – IV
Steam Turbines : Classification – Impulse turbine; Mechanical details – Velocity diagram – effect of friction – power developed, axial thrust, blade or diagram efficiency – condition for maximum efficiency. De-Laval Turbine - its features. Methods to reduce rotor speed-Velocity compounding and pressure compounding, Velocity and Pressure variation along the flow – combined velocity diagram for a velocity compounded impulse turbine.

UNIT V

UNIT VI
Steam Condensers : Requirements of steam condensing plant – Classification of condensers – working principle of different types – vacuum efficiency and condenser efficiency – air leakage, sources and its affects, air pump- cooling water requirement.

UNIT – VII

UNIT – VIII

TEXT BOOKS :
2. Gas Turbines – V.Ganesan /TMH

REFERENCES :
1. Thermodynamics and Heat Engines / R. Yadav / Central Book Depot
3. Gas Turbines / Cohen, Rogers and Saravana Muttoo / Addison Wesley – Longman
Section A:
1. Measurement of lengths, heights, diameters by vernier calipers micrometers etc.
2. Measurement of bores by internal micrometers and dial bore indicators.
3. Use of gear teeth, vernier calipers and checking the chordal addendum and chordal height of spur gear.
6. Tool makers microscope and its application
7. Angle and taper measurements by Bevel protractor, Sine bars, etc.
8. Use of spirit level in finding the flatness of surface plate.
9. Thread measurement by Two wire/ Three wire method or Tool makers microscope.
10. Surface roughness measurement by Taly Surf.

Section B:
1. Introduction of general purpose machines -Lathe, Drilling machine, Milling machine, Shaper, Planing machine, slotting machine, Cylindrical Grinder, surface grinder and tool and cutter grinder.
2. Step turning and taper turning on lathe machine
3. Thread cutting and knurling on lathe machine.
4. Drilling and Tapping
5. Shaping and Planing
6. Slotting
7. Milling
8. Cylindrical Surface Grinding
9. Grinding of Tool angles.
1. Introduction
The introduction of the English Language Lab is considered essential at 3rd year level. At this stage the
students need to prepare themselves for their careers which may require them to listen to, read, speak and
write in English both for their professional and interpersonal communication in the globalised context.

The proposed course should be an integrated theory and lab course to enable students to use ‘good’
English and perform the following:
• Gather ideas and information, to organise ideas relevantly and coherently.
• Engage in debates.
• Participate in group discussions.
• Face interviews.
• Write project/research reports/technical reports.
• Make oral presentations.
• Write formal letters.
• Transfer information from non-verbal to verbal texts and vice versa.
• To take part in social and professional communication.

2. Objectives:
This Lab focuses on using computer-aided multimedia instruction for language development to meet the
following targets:
• To improve the students’ fluency in English, through a well-developed vocabulary and enable them
to listen to English spoken at normal conversational speed by educated English speakers and
respond appropriately in different socio-cultural and professional contexts.
• Further, they would be required to communicate their ideas relevantly and coherently in writing.

3. Syllabus:
The following course content is prescribed for the Advanced Communication Skills Lab:

- Functional English - starting a conversation – responding appropriately and relevantly – using the
 right body language – role play in different situations.
- Vocabulary building – synonyms and antonyms, word roots, one-word substitutes, prefixes and
 suffixes, study of word origin, analogy, idioms and phrases.
- Group Discussion – dynamics of group discussion, intervention, summarizing, modulation of
 voice, body language, relevance, fluency and coherence.
- Interview Skills – concept and process, pre-interview planning, opening strategies, answering
 strategies, interview through tele and video-conferencing.
- Resume’ writing – structure and presentation, planning, defining the career objective, projecting
 ones strengths and skill-sets, summary, formats and styles, letter-writing.
- Reading comprehension – reading for facts, guessing meanings from context, scanning, skimming,
 inferring meaning, critical reading.
- Technical Report writing – Types of formats and styles, subject matter – organization, clarity,
 coherence and style, planning, data-collection, tools, analysis.

4. Minimum Requirement:
The English Language Lab shall have two parts:
 i) The Computer aided Language Lab for 60 students with 60 systems, one master console,
 LAN facility and English language software for self-study by learners.
 ii) The Communication Skills Lab with movable chairs and audio-visual aids with a P.A System,
 a T. V., a digital stereo –audio & video system and camcorder etc.

System Requirement (Hardware component):
Computer network with Lan with minimum 60 multimedia systems with the following specifications:
 i) P – IV Processor
 a) Speed – 2.8 GHZ
 b) RAM – 512 MB Minimum
 c) Hard Disk – 80 GB
 ii) Headphones of High quality

5. Suggested Software:
The software consisting of the prescribed topics elaborated above should be procured and used.

Suggested Software:
• Clarity Pronunciation Power – part II
• Oxford Advanced Learner’s Compass, 7th Edition
• DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
• Lingua TOEFL CBT Insider, by Dreamtech
• TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)
• The following software from ‘train2success.com’
 ➢ Preparing for being Interviewed,
 ➢ Positive Thinking,
 ➢ Interviewing Skills,
 ➢ Telephone Skills,
 ➢ Time Management
 ➢ Team Building,
 ➢ Decision making
• English in Mind, Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge

6. Books Recommended:
5. English Language Communication : A Reader cum Lab Manual Dr A Ramakrishna Rao, Dr G Natanam & Prof SA Sankaranarayanan, Anuradha Publications, Chennai
8. Books on TOEFL/GRE/GMAT/CAT by Barron’s/cup
9. IELTS series with CDs by Cambridge University Press.
15. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press.

DISTRIBUTION AND WEIGHTAGE OF MARKS:

Advanced Communication Skills Lab Practicals:
1. The practical examinations for the English Language Laboratory practice shall be conducted as per the University norms prescribed for the core engineering practical sessions.
2. For the English Language lab sessions, there shall be a continuous evaluation during the year for 25 sessional marks and 50 End Examination marks. Of the 25 marks, 15 marks shall be awarded for day-to-day work and 10 marks to be awarded by conducting Internal Lab Test(s). The End Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.